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We propose a network-based method for determining basins and barriers of complex free energy surfaces
(e.g., the protein folding landscape) from the time series of a single intramolecular distance. First, a network
of transitions is constructed by clustering the points of the time series according to the short-time distribution
of the signal. The transition network, which reflects the short-time kinetics, is then used for the iterative
determination of individual basins by the minimum-cut-based free energy profile, a barrier-preserving one-
dimensional projection of the free energy surface. The method is tested using the time series of a single
C�-C� distance extracted from equilibrium molecular dynamics (MD) simulations of a structured peptide
(20 residue three-stranded antiparallel �-sheet). Although the information of only one distance is employed
to describe a system with 645 degrees of freedom, both the native state and the unfolding barrier of about
10 kJ/mol are determined with remarkable accuracy. Moreover, non-native conformers are identified by
comparing long-time distributions of the same distance. To examine the applicability to single-molecule Förster
resonance energy transfer (FRET) experiments, a time series of donor and acceptor photons is generated
using the MD trajectory. The native state of the �-sheet peptide is determined accurately from the emulated
FRET signal. Applied to real single-molecule FRET measurements on a monomeric variant of λ-repressor,
the network-based method correctly identifies the folded and unfolded populations, which are clearly separated
in the minimum-cut-based free energy profile.

I. Introduction

The thermodynamics and kinetics of a variety of complex
systems, ranging from spin glasses to proteins, have been
investigated by energy landscape theory in the 40 years since
the publication of the seminal idea.1 Peptides and proteins have
a multidimensional and very complex potential energy surface
with a large number of conformations of similar energy.2,3 Yet,
fast folding is possible because of the natural selection of
sequences that make the native (i.e., functional) structure a
pronounced energy minimum.4 Entropic contributions are
relevant at physiological temperatures, and therefore the free
energy surface governs the thermodynamics and kinetics of
polypeptide chains. In the past five years, new methods based
on complex networks have been proposed to analyze free energy
surfaces of folding,5-10 which govern the process by which
structured peptides or proteins assume their well-defined three-
dimensional structure.

In view of the large number of microscopic folding pathways
and the conformational heterogeneity in the denatured state,
single molecule methods are a promising new approach to
experimentally determine free energy surfaces.11 One of the most
versatile approaches, single molecule Förster resonance energy
transfer (FRET), allows intramolecular distances and distance
dynamics of individual protein molecules to be monitored.12-17

Since distance distributions in different free energy states often
overlap, the separability of the different basins is not straight-
forward.18 Baba and Komatsuzaki suggested an approach
(termed BK procedure hereafter) to extract free energy basins
from the time series of a single distance.19 The BK procedure

is able to resolve different basins even if the distance distribu-
tions overlap because the short-time behavior of the observable
is considered. Applied to a simplified model of a protein with
46 beads of three types (hydrophobic, hydrophilic, and neutral),
the authors identified four free energy basins, in good agreement
with the free energy surface derived using the complete
structural information of the reference simulation.

Here we present a procedure for the automatic determination
of free energy surfaces from single-molecule time series
(FESST). First, an equilibrium transition network (ETN) is
constructed by clustering individual time windows according
to similarity in the short-time distribution of the signal, whose
usage was inspired by the BK procedure.19 The ETN is then
used as the input for the minimum-cut-based free energy profile
(cFEP) method, which is able to determine free energy basins
and barrier heights (Figure 1).7 The FESST parameters are
optimized using an intrinsic cost function, the height of the
unfolding barrier in the cFEP. This self-consistent choice of
optimal FESST parameters leads to a unique solution in an
objective and autonomous way, which allows for complete
automatization of the procedure.

The accuracy of FESST is assessed using molecular dynamics
(MD) trajectories of the 20-residue peptide �-3s,20,21 whose
sequence was designed to favor the three-stranded antiparallel
�-sheet conformation, that is, a double �-hairpin.22 �-3s has been
shown to fold reversibly to the native structure determined by
NMR22 in MD simulations with the CHARMM polar hydrogen
molecular mechanics potential energy function supplemented
by a simple implicit solvent model.23 In these simulations, �-3s
folds in about 0.1 and 8 µs at 330 and 286 K, respectively.24

Since multiple folding and unfolding events at the melting
temperature of about 330 K can be simulated in less than a
week (on a commodity processor), the free energy surface and
the folding pathways and mechanism of �-3s have been
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investigated in detail.6,20,21,25 The complexity of the free energy
surface of �-3s6 and its detailed characterization make it an ideal
test system.

II. Methods

A. Free Energy Surface from Single-Molecule Time Series
(FESST). FESST is a three-step procedure: construction of the
ETN by clustering individual time windows using local kinetic
information, identification of free energy basins by the cFEP
approach, and removal of overlap from the non-native basins.

The details of the three steps of FESST are presented in the
next subsections and the Supporting Information (SI), while a
schematic illustration is shown in Figure 2.

B. Coarse-Graining and Equilibrium Transition Network
(ETN). Each time bin in the time series of the one-dimensional
signal is assigned to a node of the ETN by the leader algorithm.26

In the initialization step, the first bin is defined as the
representative of the first node. At each successive bin tn (n >
1), the distribution of the single-molecule observable within a
short time window starting at time tn (henceforth named the
short-time distribution of tn) is compared with the distributions
of the previously visited representatives. The length of the time
window is adjusted ideally such that it is about 1-5% of the
characteristic time scale of the process monitored. To preserve
the local kinetics (i.e., the actual dynamic evolution of the
system), the comparison is carried out starting from the latest
defined representative, that is, by parsing the list of representa-
tives in inverse chronological order. A new node is defined
whenever the short-time distribution of tn deviates by more than
a given threshold from the distributions of all previously defined
representatives. In this way, one obtains a time series of nodes
and a corresponding sequence of transitions between nodes,
which is used to construct the ETN (Figure 2a,b).

C. Minimum-Cut-Based Free Energy Profile (cFEP).
Krivov and Karplus have exploited an analogy between the
kinetics of a complex process and equilibrium flow through a
network to develop the cFEP, a projection of the free energy
surface that preserves the barriers7 and can be used for extracting
folding pathways and mechanisms from MD simulations.27 The
input for the cFEP calculation is the ETN (Figure 1a), which is
derived by the coarse-graining described above. For each node
i in the ETN, the partition function is Zi ) ∑jcij, that is, the
number of times the node i is visited, where cij is the number
of direct transitions from node i to node j observed along the
time series. The transition probabilities can then be calculated
as pij ) cij/∑kcik. If the nodes of the ETN are partitioned into
two groups A and B, where group A contains the reference node,
then ZA ) ∑i∈AZi (the number of times a node in A is visited),
ZB ) ∑i∈BZi, and ZAB ) ∑i∈A,j∈Bcij (the number of transitions
between nodes in A and nodes in B). The free energy of the
barrier between the two groups is ∆G ) -kT log(ZAB/Z), where
Z is the partition function of the full ETN (Figure 1b). The
progress coordinate then is the normalized partition function
ZA/Z of the reactant region containing the reference node, but
other progress coordinates can be used, because the cFEP is
invariant with respect to arbitrary transformations of the reaction
coordinate.28

In practice, the cFEP is calculated from the ETN in three
steps: (1) The folding probability pfold or the mean first passage
time mfpt (Figure 1a) are calculated analytically for each node
on the ETN by solving the system of transition rate equations.7,27

(2) Nodes are sorted by decreasing values of pfold, and for each
of these values the relative partition function ZA and the cut
ZAB are calculated (Figure 1b). (3) The individual points on the
profile are evaluated as [x ) ZA/Z, y ) -kT log(ZAB/Z)] (Figure
1c). The result is a one-dimensional profile that preserves the
barrier heights between the free energy basins; given the barriers,
the basins can be determined.7 It is important to note that the
cFEP is a projection that preserves the heights of the barriers
as long as the underlying coarse-graining does not group
kinetically distant bins into the same node, that is, as long as
the ETN captures the correct dynamics of the system. Time

Figure 1. Illustration of the minimum-cut-based free energy profile
(cFEP).7 (a) The high-dimensional free energy surface is coarse-grained
into nodes of the network. Two nodes are linked if the system proceeds
from one to the other along the considered timeseries. The folding
probability pfold or the mean first passage time (mfpt) are calculated
for each node analytically. Note that pfold ranges from 1 (at the reference
node) to 0 and mfpt from 0 to infinity. (b) For each value of pfold (or
mfpt), the set A of all nodes with a higher folding probability (or lower
mfpt value) is defined. The free energy ∆G of the barrier between the
two states formed by the nodes in A and the remainder of the network
B can be calculated by the number of transitions ZAB between nodes
of either set.7 (c) The cFEP is a projection of the free energy surface
onto the relative partition function ZA/Z, which includes all pathways
to the reference node. For each value of pfold (or mftp), the point (ZA/
Z, -kT log(ZAB/Z)) is added to the cFEP. The cFEP projects the free
energy surface faithfully for all nodes to the left of the first barrier
(basin 1). After the first barrier, two or more basins overlap (e.g., basins
2 and 3) if they have the same kinetic distance from the reference node.
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bins misassigned by the coarse-graining result in spurious
transitions between the basins and therefore lead to a lower
barrier.27

All cFEPs in this paper are calculated with the software
package WORDOM29 using pfold as the progress variable and
an extra node for the pfold ) 0 boundary.7

Figure 2. Schematic illustration of the FESST procedure. (a) The time series of the scalar signal is coarse-grained according to the short-time
distribution of the distance. (b) The coarse-graining yields a time series of nodes and transitions that define the ETN. (c) The cFEP is plotted using
the most populated node as a reference. The first free energy basin is isolated by cutting at the first barrier. The red circle indicates the most
populated node outside the first basin, which is used to plot the cFEP for the determination of the second basin. (d) Because of the degeneracy of
the short-term distance distribution, nodes from different free energy basins overlap in the second basin (see text). The tilde is used to denote a cFEP
basin with overlap. The blue circle is the most populated node outside of B̃2. (e,f) The overlap in B̃2 is removed by comparing it with the entire distribution
of the first basin (B1). (g) The procedure is repeated for the next basin. (h) The basins extracted by FESST are illustrated on the conformation space
network of �-3s with the native basin in green, and non-native basins Ch-curl1 (B2) and Ns-or1 (B3) in red and blue, respectively.21
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D. Iterative Determination of Free Energy Basins. The
most populated node is used to isolate the first basin by the
cFEP approach. The barrier in the cFEP (Figure 2c) corresponds
to the barrier leaving the basin identified first. For the remaining
basins, the procedure is the same, except that the most populated
unassigned node is used as a reference (Figure 2d). All nodes
to the left of the cut at the first barrier make up the basin. Basins
to the right of the first barrier are potentially overlapping (Figure
1c); thus, each basin requires a separate “exiting” profile.27

Moreover, a FESST basin usually encompasses more than one
of the true free energy basins, because the short-time distribution
of the single distance can be degenerate. To remove this overlap,
the signal’s distribution in long time windows (ideally 10% of
the time characteristic for the process monitored) starting from
each bin assigned to the considered FESST basin is compared
with the distribution of the signal in the entire basin identified
previously (Figure 2e). Longer time windows are considered
here for improved statistics and to exploit information comple-
mentary to the short-time distribution used in the construction
of the ETN. Different subbasins in the basin to split are
characterized by different ranges of the comparison metric
(Figure 2f), because two distinct free energy basins differ in
their similarity to a third one.

E. Static Model and Minimal-Kinetics Model. To inves-
tigate the importance of the system’s kinetics and the signal’s
distribution in FESST, two simple procedures are tested for the
identification of the native basin. They are called the static and
the minimal-kinetics models as follows.

In the static model, a state is characterized by a range of
observable values. To make the comparison with FESST as
stringent as possible, the best possible static model is generated
using the most accurate definition of the native basin.27 For this
purpose, the optimal observable range is determined for each
completeness value (coverage of the native state by the basin
identified, cf. Figure S3 of the SI) by testing multiple ranges
and recording only the solution with the highest accuracy
(fraction of the basin identified being native, cf. Figure S3).

In the minimal-kinetics model, each bin of the time series is
assigned to the node defined by the discretized mean and
standard deviation of the signal calculated over a short window
around the bin considered. Subsequently, the resulting time
series of nodes is analyzed by cFEPs as for FESST. This model
incorporates local kinetic information by the consideration of
the short-time evolution of the signal. In contrast to FESST,
the minimal-kinetics model ignores the detailed structure of the
signal’s distribution. As for the static model, the parameters of
the minimal-kinetics model, for example, the length of the
window, are fine-tuned using an independent characterization
of the native basin27 as input.

III. Results. Application to MD Simulations of �-Sheet
Folding

A. MD Simulations of �-3s. A total simulation time of 20
µs at 330 K was used for the FESST analysis. It has been shown
previously that, in MD at 330 K, �-3s folds reversibly to the
NMR conformation, irrespective of the starting structure; 23 of
the 26 nuclear Overhauser effect constraints are satisfied.20,21

All MD runs and most of the analysis of the trajectories were
carried out with CHARMM.30

A mean field approximation based on the solvent accessible
surface (SAS) was used to describe the main effects of the
aqueous solvent.23

B. Intramolecular Distance and Metric Used for Coarse-
Graining. The time series of the C�Gln4-C�Thr16 distance is
used in FESST, but the results are robust with respect to the

choice of residue pairs as long as one of the two residues is in
�-strand 1 and the other in �-strand 3. Two time windows [t1, t1

+ τ] and [t2, t2 + τ] are grouped into the same node of the
ETN if their distributions of the intramolecular distance (the
short-term distribution) pass a Kolmogorov-Smirnov test,31

which checks if two samples are picked from the same
distribution. Each MD snapshot is used as a starting point of a
time series bin, so that there are as many bins as coordinate
frames along the MD trajectory. In other words, two successive
bins are shifted by the MD saving interval of 20 ps. The length
of the time window τ is chosen such that it is much shorter
than the folding time, which is about 100 ns in MD simulations
of �-3s at 330 K.21 The dissimilarity of the two time windows
is defined as the maximum difference of the cumulative
distribution functions c1, c2 of the distance r (dissimilarity )
maxr>0|c1(r) - c2(r)|). The test is passed; that is, two time bins
are grouped in the same node if

where N is the number of MD snapshots in each time window
and � the acceptance cutoff that corresponds to a certain
confidence level.31 Note that the FESST results on �-3s are
robust with respect to the choice of N in the range 30 e N e
250 (i.e., 0.6 ns e τ e 5 ns) and � in the range 0.3 e � e 1.5
(Figure S1 of the SI). Values of τ ) 2 ns and � ) 0.3 are used
in the following. To slightly improve on the sampling of the
MD simulation, a detailed balance is imposed to the FESST-
ETN by averaging the numbers of transitions cij and cji between
nodes i and j.

C. Native Basin and Unfolding Barrier. The free energy
basins of �-3s have been determined previously by the cFEP
procedure using information on all 645 coordinates.27 Since the
full information of the peptide dynamics was taken into account,
those free energy basins and barriers are used here as a reference
for a critical evaluation of FESST and the comparison with other
approaches.

Using the time series of the C�Gln4-C�Thr16 distance, the
native basin of �-3s is determined by FESST with remarkable
accuracy (96% of the FESST native basin is part of the native
state as determined by the 645 coordinates of cFEP, cf. Figure
S3 of the SI) and completeness (95% of the native state of
the 645 coordinates of the cFEP is captured by the FESST native
basin, cf. Figure S3 of the SI). Moreover, the FESST unfolding
barrier (defined as the free energy difference between the bottom
of the first basin on the left in the cFEP and the top of the first
barrier in the cFEP7) has a height (10.7 kJ/mol) very similar to
the one obtained by the 645-coordinates cFEP (10.6 kJ/mol,
Figure 3a and Figure S5 of the SI).

To investigate the influence of the choice of the residue pair
monitored, each of the 154 C�-C� pairs was tested in FESST.
Remarkably, for 32 of these pairs the native basin is identified
with an accuracy greater than 80% and at the same time a
completeness of more than 90% (Figure 4b). Interestingly, the
larger the separation along the sequence, the better the score.
A notable exception is the 5-7 distance, which reflects the
formation of the �-turn at the N-terminal hairpin. The distances
yielding the best score are those between residues in �-strands
1 and 3 (top left part of the matrix in Figure 4b), which is likely
to be a consequence of the �-sheet topology. Moreover, the
C�-C� distances involving the N-terminal �-strand show a
higher score than those involving the C-terminal �-strand, which
is consistent with the higher structural stability of the C-terminal

dissimilarity e� 2
N
·�
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hairpin.20,21 In other words, the fully folded state can be better
separated from non-native conformers by taking into account
the N-terminal �-strand, because the C-terminal hairpin is folded
correctly in the most populated non-native conformers.

FESST performs much better than the static model (Figure
3b and Figure S8 of the SI), which shows the importance of
exploiting information about the short time kinetics. The cFEP

calculated from the time series of coarse-grained distance values
without taking into account the kinetic information displays no
barrier, which indicates that a single distance value does not
discriminate the native state of �-3s (Figure 3). If, in FESST,
the time series was coarse-grained based on statistical properties
(such as mean and standard deviation) instead of the signal’s
distribution, a native state of comparable quality would result
(minimal-kinetics model in Figure 3b), but non-native basins
are detected significantly less accurately (e.g., only 72%
accuracy and 77% completeness for Ch-curl1, which is defined
below).

Although both approaches make use of short-time distribu-
tions of the signal, FESST has two advantages compared to the
BK procedure.19 First, FESST exploits the local kinetic informa-
tion for the coarse-graining, while the BK procedure iteratively
removes the time windows least similar to the distribution of
the whole distance time series, thus ignoring the chronological
order of the windows. Second, the optimal values of parameters
required by FESST (size of the time window k and acceptance
cutoff � used in the coarse-graining) can be determined
automatically using the cFEP barrier height as a cost function,
because the barrier height is the main determinant of the
interconversion rates between the free energy basins. Therefore,
the most accurate determination of the native basin yields the
highest barrier.27 Correspondingly, the parameter set yielding
the highest barrier achieves the highest score (defined as the
product of accuracy and completeness, Figure S2 of the SI).
Therefore, FESST yields a single data point in the accuracy
versus completeness plot (Figure 3b), whereas the basins
extracted by other procedures depend on the cutoffs chosen for
their iterative refinement, so that it is not possible to automati-
cally identify the optimal solution.

D. Identification of Non-native Basins. The most populated
node outside of the native basin is used as a reference to plot
the cFEP profile for identifying the first non-native basin (termed
B̃2 in Figure 2). Because of the degeneracy of the short-time
distribution of the distance, multiple free energy basins may
overlap on the cFEP. Such overlap can be removed by
comparing the long-time distance distribution of each time
window with the distance distribution in a previously identified
basin. In practice, for each time window [t2, t2 + T] in basin
B̃2, the distribution of the distance is compared with the
histogram of the entire native basin. Time windows of length

Figure 3. (a) Determination of the native basin by taking into account
all structural information (black) or only a single distance (green). The
cFEP is shown with the most populated node as a reference (for details,
see the SI). If the short-time kinetics of the system is ignored, (only
the network of transitions between the coarse-grained values of the
single distance is analyzed), the cFEP (blue) displays no discernible
barrier, and no meaningful basin can be extracted. (b) Comparison of
FESST with a previously published single distance approach (BK )
Baba and Komatsuzaki19) and two simple models (see the Model section
for details). Note that FESST and the minimal-kinetics model yield a
single data point rather than an accuracy versus completeness curve,
because there is a unique optimum that can be determined by
maximizing the barrier height.

Figure 4. Robustness of FESST with respect to the choice of the distance. (a) Histograms of distance between the C� atoms of residues 4 and 16
for the snapshots in each free energy basin determined by cFEP using all 645 degrees of freedom of �-3s.27 (b) Matrix of scores for native state
detection. Each (i,j) value of the score was calculated by applying FESST to the time series of distance between the C�-atoms of residues i and j
(Gly6 and Gly14 have no C� atom). The inset shows a schematic representation of �-3s with the three native �-strands (green rectangles). In the
coarse-graining step of FESST, N ) 100 distance values are compared, and the acceptance cutoff � ) 0.3 is used in the Kolmogorov-Smirnov test
(cf. Section III B).
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T ≈ (10 to 20) τ, that is, significantly larger than those used for
the construction of the ETN, are considered here for better
statistics. The comparison consists of calculating the Kantor-
ovich metric32 between the two distributions (the area between
the two cumulative histograms, Figure 2e). Finally, each peak
in the histogram of the Kantorovich values is assigned to a new
subbasin (Figure 2f). The window size T can be chosen by
optimizing the separation of the different peaks in the Kantor-
ovich histogram (Figure S9 of the SI).

With this procedure, the basin B2 derived from B̃2 corresponds
to the 645 coordinates of the free energy basin Ch-curl1 (curl-
like conformation with folded C-terminal hairpin27) with 92%

accuracy and 85% completeness. Further, the third FESST basin
B̃3 encompasses two free energy basins and can be split by
comparing with the distance distribution in B̃2. The free energy
basin Ns-or1 (N-terminal strand out of register and folded
C-terminal hairpin27) can be extracted with 77% accuracy and
68% completeness. The second subbasin detected in B3 contains
56% of MD snapshots in Ch-curl2 (curl-like conformation 227)
covering 77% of these MD snapshots. These non-native
conformers are stabilized mainly enthalpically.27 Entropically
stabilized conformations such as those in the “helical basin”
and the “entropic region”27 show a very broad distribution of
distances (blue and gray curves in Figure 4a). These broad

Figure 5. Markov state model used to generate the photon time series from the MD time series and illustration of the transformation of the photon
time series into the FRET-efficiency time series. Red, green, and blue curled arrows represent acceptor photon emission, donor photon emission,
and photon absorbance. (A, top) Schematic illustration of the emulated FRET experiment, where r(t) represents the distance between the C�-atoms
of residues 4 and 16. (A, bottom) State diagram of the Markov process used to simulate the FRET experiment. (B) Illustration of the simulation
of the FRET experiment, which uses the time series of the distance r, measured along the MD trajectory, to generate the photon time series. For
each MD saving interval of 20 ps, 100 steps (black dots) of a random walker on the Markov state model are carried out with a constant value of
the distance r(t), i.e., the constant Förster rate kF[r(t)]. Note that each excitation leads to an emitted photon in the FRET emulation. Direct excitation
of the acceptor is set to f ) 5% of the donor excitation rate.40 (C) Transformation of the photon time series into the FRET-efficiency time series.
The initial photon time series is binned with binning time S. In each bin, the number of acceptor photons nA and donor photons nD is counted. The
FRET efficiency is then calculated using the formula EFRET ) nA/(nA + nD).
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distributions overlap strongly with those of other basins and
therefore are distributed over multiple FESST basins. In other
words, both B̃2 and B̃3 contain time windows of the entropic
region that can be removed by the procedure illustrated in Figure
2e,f. (For the native basin this step is not performed because
the overlap of the distance distributions is much smaller than
for B̃2 and B̃3, and no basin for comparison is available.)

IV. Application to an Emulated FRET Signal

A promising experimental method for obtaining intramolecu-
lar distance information in heterogeneous systems is single-
molecule FRET.12,15,17 To elucidate the applicability of FESST
to such data, a FRET experiment is mimicked by generating a
photon time series using a Markov state model (Figure 5). In
this model, the rate of energy transfer kF(r) between the two
“virtual” chromophores depends on the inverse sixth power of
the distance r between the C�-atoms of �-3s residues 4 and 16
as recorded along the MD trajectory (for details, see SI). From
such photon time series, the native state of �-3s can be detected
with 78% accuracy and 78% completeness from 1000 photons
per folding time (Figure 6). This detection quality is obtained
by comparing intervals of the time series of FRET efficiencies
(for details, cf. Figure 5C and SI) as long as 10 ns, which
corresponds to about one tenth of the folding time of �-3s in
the MD simulation at the melting temperature. The detection
quality depends only weakly on the size of each FRET bin
(Figure S10 of the SI) and the length of the time series interval
(Figure S11 of the SI). However, simulations of a simple two-
state model indicate that the required number of photons is
significantly reduced if the individual populations are slightly
better separated in distance space (details in SI) than the free
energy basins of �-3s (Figure 4a), suggesting that the application
of the method to experiments is feasible.

V. Application to Single Molecule FRET Experiments

In a first attempt to apply FESST to real experimental data,
we chose a protein whose folding dynamics at the unfolding
midpoint (where both folded and unfolded state are populated)
are in the range of a few milliseconds. This allows us to use

experiments on freely diffusing molecules to maximize the
excitation rate, while there is at the same time a large probability
of observing folding or unfolding transitions during the diffusion
time through the confocal volume of about a millisecond. As a
result, we obtain a large number of short observations, similar
in spirit to short simulations from parallel or distributed
computing.33 Even though these short observations will largely
be independent, they can still be used to reconstruct the free
energy surface if they are locally equilibrated, representative
of the relevant conformational space, and provide a sufficient
time resolution for the process investigated.24,33

We used a variant of monomeric λ-repressor, a well-
established fast-folding protein34,35 with a folding relaxation time
of about 1 ms at the unfolding midpoint,36 labeled it with Alexa
Fluors 488 and 594 as FRET donor and acceptor, respectively,
and investigated it with confocal single molecule experiments
at a guanidinium chloride concentration of 0.68 M (see SI for
details). Every protein molecule diffusing through the confocal
volume will then result in a burst of photons. By selecting bursts
with a duration of at least 2.5 ms and by working at high
excitation rate, the average number of photons in the 48461
events collected during 4 h measurement time used was 575,
which allows us to apply the FESST analysis with a data binning
of 0.1 ms. FESST correctly identifies the folded and unfolded
subpopulations (Figure 7a). Because of the high excitation power
used, a significant contribution of acceptor photobleaching is
present, which results in a third apparent population at lower
transfer efficiencies.

The corresponding cFEP plotted from the unfolded state
(Figure 7b) exhibits a well-defined folding barrier at ZA/Z )
0.42, whose height can be maximized by node merging as for
the analysis of the �-3s simulations (details in the SI, Figure
S5). Even though the position of the barrier agrees with the
relative populations, the resulting barrier height for folding (and
for unfolding, see Figure S16 of the SI) is in the range of 1 kT,
significantly lower than expected from the folding rate of
225 s-1 extracted from the frequency of transitions identified
in the bursts. A factor that contributes to the reduction in barrier
height is the imperfect separation of populations due to shot
noise, resulting in spurious transitions in the FESST analysis.
Another limitation is the time resolution achievable with photon
detection rates in the range of about 0.14 MHz currently
available in our free diffusion experiments, with which it is not
possible to resolve the nanosecond diffusive dynamics of the
polypeptide chain16 from individual fluorescence bursts. Even
though FESST is still limited by the photon rates in current
single molecule experiments, the clear identification of sub-
populations and the existence of a barrier in the resulting free
energy profile illustrate its feasibility and potential for the
analysis of experimental data.

VI. Discussion

FESST is a method for determining free energy basins and
barriers from the time evolution of a scalar observable. The
accuracy and range of possible applications of FESST have been
investigated using the scalar time series derived from atomistic
MD simulations of the reversible folding of a structured peptide.
First, FESST was applied to the time series of a single
interresidue distance of �-3s, a 20-residue peptide with native
three-stranded �-sheet topology. The native state of �-3s, three
subbasins in the denatured state, and the free energy barrier for
unfolding can be determined with high accuracy. Importantly,
FESST is robust to the choice of the residue pair. In fact, 20%
of the 154 pairs of C�-C� distances can be used in FESST for

Figure 6. FESST performance on an emulated FRET experiment. The
time series of FRET efficiencies calculated for 0.4 ns bins is used for
the analysis by FESST with a window size of 25 bins (the effect of
other window sizes is illustrated in Figure S11 of the SI) and acceptance
cutoff � ) 0.3. The accuracy and completeness for the identification
of the native basin is calculated for the set of snapshots in all bins of
the first FESST basin (cf. Figure S3 for the definition of accuracy and
completeness). The excitation rate kex is expressed as the average
number of photons per folding time (about 100 ns for �-3s21 in MD
simulations at 330 K).
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determining the native state of �-3s, and in particular distances
between residues in �-strands 1 and 3 are optimal. Furthermore,
the basin assignment by FESST is robust to changes of the
parameters used for coarse-graining, which can be determined
self-consistently.

In a second test, FESST was applied to a time series of FRET
efficiencies generated from the MD trajectory. An accurate
identification of the native basin of �-3s is possible with FRET
efficiencies calculated from about 1000 photons emitted during
the folding time.

A first application to single-molecule FRET experiments on
a freely diffusing monomeric λ-repressor with folding dynamics
in the millisecond range shows that FESST is able to correctly
identify the folded and unfolded subpopulations and yields a
free energy profile that captures this separation. This result
clearly demonstrates the feasibility of applying FESST to
experimental data. However, the height of the folding barrier
in the corresponding free energy profile is lower than expected,
an effect that is presumably dominated by the current limitations

in photon rates. Recent developments in the use of additives
that reduce photobleaching and increase fluorescence emission
rates37-39 are expected to contribute strongly to an improvement
of this situation both for experiments on freely diffusing and
immobilized molecules.

The present analysis focused on the FRET efficiency, because
it is one of the most commonly used observables. Additional
information, for example, interphoton times, polarization, or
fluorescence lifetimes, is expected to further increase the
discriminatory power of FESST. In conclusion, FESST can be
applied to the time series of any type of scalar observable as
long as the short-time distribution of the single-molecule signal
contains enough information to allow FESST to remove the
signal’s degeneracy.
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1 FESST application to atomistic simulations of

β-sheet folding

Most of the data presented in the first subsection of this supporting information

(SI) refer to the time series of the single distance Cβ Gln4−Cβ Thr16 in the Beta3s

peptide whose time series was generated by atomistic simulations (cf. Sec. 1.1).

Robustness tests are presented in subsections 1.2-1.5.

1.1 Molecular dynamics (MD) simulations

Beta3s is a designed 20-residue peptide (Thr1-Trp2-Ile3-Gln4-Asn5-Gly6-Ser7-Thr8-

Lys9-Trp10-Tyr11-Gln12-Asn13-Gly14-Ser15-Thr16-Lys17-Ile18-Tyr19-Thr20) that folds

to a three-stranded anti-parallel β-sheet [1, 2]. Multiple folding and unfolding

events have been sampled by molecular dynamics (MD) simulations [3, 4] with

an implicit solvent model [5]. In these MD simulations, Beta3s was modeled by

explicitly considering all heavy atoms and the hydrogen atoms bound to nitro-

gen or oxygen atoms (PARAM19 force field [3, 6] with the default cutoff of 7.5

Å for the nonbonding interactions). A mean field approximation based on the

solvent accessible surface (SAS) was used to describe the main effects of the aque-

ous solvent [5]. More explicitly, the screening of the electrostatic interactions is

approximated by the distance-dependent dielectric function ε(r) = 2r, while the

remaining solvation effects are approximated by replacement of the monopole mo-

ment of charged groups by strong dipole moments and a linear function of atomic

SAS values. The latter requires only two surface-tension like parameters and takes

into account both polar and apolar solvation effects by a negative (i.e., favorable)

value of the surface-tension parameter for nitrogen and oxygen atoms, and a pos-

itive (unfavorable) value for carbon and sulfur atoms. Ten MD runs of 2 µs each

with different initial distributions of velocities were performed with the Berendsen

thermostat (coupling constant of 5 ps) at 330 K, which is slightly above the melting

temperature of Beta3s [7]. A time step of 2 fs was used and the coordinates were

saved every 20 ps for a total of 106 MD snapshots. This required three weeks on a

10-CPU cluster.
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1.2 Robustness of FESST upon variation of window size
and cutoff for coarse-graining

It is important to evaluate the performance of FESST upon changes in the para-

meters used for coarse-graining. This analysis shows that the determination of the

native basin is robust (Fig. S1). The height of the unfolding barrier as determined

in the cFEP can be used to find the optimal coarse-graining parameters (Fig. S2).

Figure S1: Robustness of FESST upon variation of the parameter used for coarse-
graining. The signal is the single distance Cβ Gln4−Cβ Thr16 of Beta3s obtained by
implicit solvent MD. The score is the product of accuracy (i.e., fraction of the FESST
native basin belonging to the native state as determined using all 645 coordinates of
Beta3s, cf. Fig. S3) and completeness (i.e., fraction of the native state captured by
FESST, cf. Fig. S3). The range of values tested for the size of the time window is
10 ≤ N ≤ 500, i.e., 0.2 ns ≤ τ ≤ 10 ns as the number of MD snapshots N is equal to τ
times the saving frequency of 1/20 ps−1. Results in the main text are obtained for values
of τ = 2ns (N=100) and ζ = 0.3.
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1.3 Merging of nodes in the native basin

In comparison to the 645-coordinates equilibrium transition network (ETN), the

ETN derived from the single distance signal (termed FESST-ETN) lacks nodes with

very large weight (Fig. S4). For instance, the most populated node in the latter

(158 snapshots) is almost three orders of magnitude smaller than the most visited

node of the 645-coordinate ETN (88022 snapshots). To render the most populated

node in the FESST-ETN more representative of the native basin, the M heaviest

native nodes are combined. The native basin consists of those nodes with a value

of the progress variable ZA/Z in the cFEP (calculated from the most populated

node) smaller than the value at the first barrier in the cFEP[8]. The new ETN

is constructed from the node sequence in the MD simulation with the heaviest M

native nodes merged into one node. The merging step affects only the native basin

(inset of Fig. S5), and mainly results in a lower (i.e., more favorable) free-energy

value for the bottom of the native basin, i.e., a higher unfolding barrier. The highest

value of the unfolding barrier is observed for M = 7000 nodes merged. The value

of the barrier height is robust for 3000 ≤ M ≤ 12000. For M ≥ 3000 nodes merged,

the weight of the most populated node in the FESST-ETN exceeds the weight of

the most visited node in the unmodified 645-coordinates ETN (Fig. S6). As a basis

of comparison, the merging procedure can also be applied to the 645-coordinates

ETN. The highest barrier is found for only 107 nodes merged and exceeds the value

for the unmodified network by only 0.7 kJ/mol (Fig. S5).

Another consequence of the reduced size of the reference node is the overesti-

mation of the time needed to reach the reference node from the other nodes in the

FESST-ETN, i.e., a folding time much longer than the one obtained from the 645-

coordinates ETN (Fig. S7). For the FESST-ETNs with M ≥ 3000, the distribution

of the mean first passage times matches those of the 645-coordinates ETN (Fig. S7).

The correspondence of the folding time distributions provides further evidence that

the system dynamics is reliably captured by the FESST coarse-graining. The reli-

able representation of the system’s dynamics in the ETN is a necessary condition

for the correct operation of the cFEP approach [8].
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1.4 Comparison of FESST performance for suboptimal in-
tramolecular distances monitored

It is useful to evaluate the performance of FESST for a mediocre and bad separation

of the native state peak from the rest of the basins. For this purpose the Cβ-Cβ

distance between residues 1 and 13 (Fig. S8, left) and residues 8 and 18 (Fig. S8,

right) are examined.
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Figure S8: Distribution of inter-residue distances in different free-energy basins as iden-
tified using all 645 coordinates of Beta3s. The insets show the accuracy and completeness
of the native state detection of FESST (cf. Fig. S3) compared to the BK procedure [10]
and static model (described in the main text).

1.5 Choice of the window size for removal of basin overlap

Multiple free-energy basins may overlap on the cFEP because the short-time distri-

bution of the distance is degenerate. To split the basin B̃2 determined by FESST-

cFEP as the first non-native basin (Fig. 2d), the long-time distribution of the dis-

tance for each time window [t2, t2 +T] (the time bin t2 belongs to B̃2) is compared

with the distribution of the distance in the entire native basin. The individual sub-

basins correspond to individual peaks of the histogram of the comparison metric

for a large range of window sizes T (Fig. S9). A value of T=40 ns is used in the

main text.
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Figure S9: Effect of different window lengths in basin overlap removal. Compared is
the Kantorovich metric distribution (area between cumulative histograms) between the
long-time distance distributions in windows of varying length T around MD snapshots
in B̃2 and the native distance distribution, i.e., all MD snapshots in B1 (see Fig. 2 for
definition of B1, B̃2). This plot illustrates that the ranges of Kantorovich metric are
different for the two different subbasins in B̃2, i.e., Ch-curl1 and Entropic.
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1.6 Computational costs

Coarse-graining is the computational bottleneck, and the time it requires depends

on the parameters used. Using a variant of the leader algorithm that preserves

local kinetics (see main text) and the Kolmogorov-Smirnov test, coarse-graining

of 106 time windows (of the distance between Cβ-atoms of residues 4 and 16 with

a window size of N = 100 and a cutoff parameter ζ = 0.3) takes 6 hours on a

recent XEON CPU with 2.33 GHz clock frequency. The CPU time depends on the

acceptance cutoff. A cutoff of ζ = 0.38 reduces the running time to 4.5 hours. The

cFEP calculation takes only five to ten minutes. Very small memory requirements

are needed for both procedures. Note that the determination of multiple free energy

basins requires only one coarse-graining, but multiple cFEP calculations.

2 FESST application to an emulated FRET sig-

nal

To emulate a FRET experiment, the MD-generated time series of the distance

between residues 4 and 16 in Beta3s is used together with a Markov state model

to generate the photon time series (Fig. 5). The photophysical states considered

are DA (both donor and acceptor in ground state), D∗A (donor in excited state,

acceptor in ground state), DA∗ and D∗A∗. The transition probabilities are ap-

proximated by the product of the transition rate and the time step (chosen to be

dt = 0.2 ps, i.e., 100 observations along the MD saving interval of 20 ps). Finer

time steps changed the photon counting results only marginally. For the intrin-

sic relaxation rates of donor and acceptor, kA = kD = 2500 1
2 ns

is used. Direct

excitation of the acceptor is set to 5% of the donor excitation rate. The Förster

rate kF (r) = kD
(
R0

r

)6
is calculated from the instantaneous distance r between the

Cβ-atoms of residues 4 and 16. The Förster radius is R0 = 12 Å, which is the

smallest radius that separates the distributions of FRET efficiencies of native and

non-native conformations best. This separation is important, because there is an

anticorrelation of the score of the native basin and the overlap of the distributions
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in native and non-native state (data not shown).

The photon time series from the emulated FRET experiment is divided into

bins of size S and the FRET efficiency EFRET = nA

nA+nD
is calculated for each bin

(Fig. 5.C), where nA and nD are the number of acceptor and donor photons in

the considered bin, respectively. The effect of the number of photons per bin is

studied by the variation of the excitation rate (Fig. 6). For comparability with

experiments, we report the number of photons emitted during the folding time.

To improve the statistics at low emission rates, the photon time series is split into

bins of S=0.4 ns, i.e., 20 MD snapshots. To improve sampling, detailed balance is

imposed on the equilibrium transition network (ETN), i.e. the weight of each link is

set to the average number of transitions in either direction. The score of the native

state detection increases with the average emission rate, and reaches a plateau

of 85% accuracy and 88% completeness (cf. Fig. S3 for definition) at an emission

rate of about 5000 photons per folding time (Fig. 6), compared to 96% accuracy

and 95% completeness obtained by applying FESST to the distance time series.

The binning time S has little influence on the FESST performance (Fig. S10),

whereas the length of the window T (parameter in FESST coarse-graining) shows

a significant influence at low excitation rates (Fig. S11).
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Figure S10: Robustness of the native basin detection in emulated FRET experiments
upon change of binning time S. Note that the scores are calculated on a snapshot-wise
basin assignment as for Fig. 6. For each excitation rate kex, only the highest score
(tested are window sizes of 2, 4, 6, 8, 10, 20, and 40 ns) is shown. The excitation rate
kex is expressed as the number of photons emitted per folding time, which is 100 ns for
Beta3s at 330 K (Fig. 6).
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Figure S11: Effect of different window sizes T [ns] on FESST performance in emulated
FRET experiments with 0.4 ns bins. The identification of the native basin is robust with
respect to the choice of the window size in the range 6 ns ≤ T ≤ 10 ns. The same setup
as for the data shown in Fig. 6 and described in the SI is used. As in Fig. 6, the excitation
rate kex is expressed as the number of photons emitted during the folding time, which is
100 ns for Beta3s at 330 K [11].

3 One-dimensional two-state system: Resolution

limit of FESST

It is useful to investigate the resolution limit of FESST using a simple model

(Fig. S12). The time evolution of the monitored signal is given by Langevin dynam-

ics of a particle in a one-dimensional potential. To model a two-state system, the

potential is switched with a constant rate between two harmonic wells (Fig. S12 a).

The sequence of emitted photons is determined by a Gillespie-type simulation [12].

The time series of FRET efficiencies is derived from the binned photon sequence

and analyzed by FESST as described for Beta3s with detailed balance imposed.

Remarkably, the accuracy of FESST is always higher than the static model even

for very small separations of the minima (Fig. S12 b,c,d). FESST can discriminate

the minima based on the curvature alone, albeit with a relatively large number

of detected photons required (cf. Fig. S12 and Fig. S13). Although the simple

model does not reflect the complexity of a multidimensional system, the present
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results indicate that the reliable operation of FESST requires the detection of 100

to 1000 photons during the residence time in one free-energy state. In real single-

molecule FRET experiments, 100 to 1000 photons can be detected in about one

to ten milliseconds. Accordingly, we expect FESST to be a suitable approach for

determining the properties of free energy surfaces of molecules that exhibit dynam-

ics in this range or slower, thus covering a large part of the biologically important

time scales [13, 14, 15, 16].
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Figure S12: Resolution limits of FESST examined with a one-dimensional two-state
model. (a) Schematic illustration of the model: Dynamics of a massive particle in a
harmonic potential that switches from one shape and position to the other with rate κ.
The position time series is then transformed to a time series of FRET efficiencies as for
Beta3s (the equilibrium position is defined as x0 = 10 A.U. (arbitrary units), the Förster
radius asR0 = 12 A.U., the curvature of potential 0 as ω0 = 100 A.U., and the interchange
rate is assumed to be κ = 0.005 A.U.). (b-d, left) Illustration of the potential’s shape and
position. (b-d, right) Accuracy and completeness of the basin with index 0 as detected
by FESST and the best static model in ten independent simulations for the potential’s
setup on the left. The parameters for FESST are optimized using the height of the
unfolding barrier determined self-consistently (cf. Fig. 2c). For the static model, the
basin is formed by all bins with a FRET efficiency lower than a given cutoff. To make
the most stringent comparison, the detection quality of the static model is maximized
by finetuning both the length of the binning interval and the cutoff value based on the
knowledge of the solution. The shapes and positions of the potentials used to investigate
the different scenaria are given in the individual panels: (b) examines the effect of a shift,
(c) the effect of a broadened potential with identical equilibrium position, and for (d) both
curvatu./Paper/leader-single-molecule/vorschlag-FRET/re and equilibrium position are
changed. For a minor shift x1 − x2 = 1 A.U. of the two minima of the potential (panels
(c) and (d)), FESST yields significantly more accurate solutions with only slightly lower
completeness than the static model for as few as 200 photons per residence time. An
increased amount of about 1000 photons per residence time is required if the equilibrium
positions match and the curvatures differ by a factor of ten (panel c).
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4 FESST application to real experimental data

(single-molecule FRET on λ-repressor)

4.1 Expression, purification, and labeling of λ-repressor

A plasmid (pET-47b(+)-vector, Novagen) containing the custom-synthesized and

codon-optimized sequence coding for the monomeric N-terminal fragment of λ-

repressor including an amino terminal hexahistinie tag was purchased from Cel-

tek Genes (Nashville, USA). Threonine 8 and lysine 70 were replaced by cysteine

residues for fluorophore labeling. The final amino acid sequence was GPSLCQE-

QLEDARRLKAIYEKKKNELGLSQESVADKMGMGQSGVGALFNGINALNAY-

NAALLAKILCVSVEEFSPSIAREIR. The protein was expressed in E.coli BL21

cells at 37◦C in LB medium containing kanamycin and 1mM IPTG for induction.

The resulting inclusion bodies were harvested by centrifugation after cell lysis with

a French pressure cell. Resolubilized protein was subjected to immobilized metal

ion affinity chromatography (IMAC; HisTrap H, GE Healthcare) at pH 8. The

single peak eluting in the imidazole gradient was collected. The N-terminal His-

Tag was cleaved with HRV 3C protease. Uncleaved λ-repressor and protease were

separated using IMAC and gel filtration (Superdex 75, GE Healthcare). Labeling

was performed essentially as described previously [17]. Purified protein was reacted

first with Alexa Fluor 488 maleimide (Invitrogen) at substochiometric concentra-

tions according to the supplier’s recommendations. The resulting products were

separated using anion exchange chromatography (MonoQ 5/50 GL, GE Health-

care). Singly labeled protein was then concentrated by ultrafiltration (Centricon,

Millipore) and reacted with an excess of Alexa Fluor 594 maleimide. Monomeric

λ-repressor with one donor and one acceptor dye was purified by anion exchange

and size exclusion chromatography. All steps were carried out at high concen-

trations of denaturant. Correct labeling was confirmed by electrospray ionization

mass spectroscopy.
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4.2 Single molecule spectroscopy

Measurements were carried out in a MicroTime200 (PicoQuant, Berlin, Germany)

with continuous wave laser excitation at 488 nm essentially as described previously

[17, 18]. In measurements for the FESST analysis, protein was refolded and diluted

from a stock in 8 M guanidinium chloride into a buffer containing 50 mM sodium

phosphate buffer pH 7, 0.01% Tween, 150 mM beta-mercaptoethanol, 10 mM cys-

teamine to a final concentration of guanidinium chloride of 0.68 M and 16 pM

of protein. The sample was measured in a temperature-controlled cell [18] with

a temperature of 12◦C at the position of the confocal volume. The laser power

was adjusted to 600 µW . Nanosecond correlation measurements were performed

at a protein concentration of 1 nM with a laser power of 30 µW and analyzed as

described previously [19].

4.3 Treatment of photon time series with bursts

As freely diffusing molecules are observed in our FRET-experiments, the photon

time series is structured in bursts. This signal has to be converted into a time

series of nodes by coarse-graining with FESST (Fig. 5.C, S14).

Step 1: Binning

Input Data: Bursts

Step 2: Coarse-graining with window size N=

Not coarse-grained,

because no complete

window fits into the burst

Not coarse-grained,

because no complete

window fits into the burst

Not coarse-grained,

because no complete

window fits into the burst

Not coarse-grained,

because no complete

window fits into the burst

Not coarse-grained,

because no complete

window fits into the burst

Figure S14: FESST coarse-graining for photon time series from individual bursts. As
for a continuous photon time series, the data are first binned (Step 1). In the second
step, bins are assigned to a node if their short-time window fits completely in the burst.
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4.4 Robustness of FESST upon variation of coarse-graining
parameters

This analysis shows that the determination of the folded and unfolded popula-

tions/basins is robust for 25 ≤ N ≤ 30 (Fig. S15, left) and 0.3 ≤ ζ ≤ 0.4 (Fig. S15,

right).
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Figure S15: Differences in cut-based free-energy profiles (cFEP) upon changes of the
FESST coarse-graining parameters. The input signal consists of a photon time series
measured in a FRET experiment of freely diffusing λ-repressor fragments. Bursts are
characterised by at most δt = 70µs between two successive photons. FESST is applied
to the time series of FRET efficiencies calculated for 0.1 ms bins. The highest barrier
resulted for a window size N = 25 bins (which corresponds to a time τ = 2.5 ms) and
an acceptance cutoff ζ = 0.4. Note that the ζ = 0.3 (green) and ζ = 0.4 (black) curves
overlap fully (right panel), and thus the former is not visible.
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4.5 cFEP with the folded state as a reference

It is interesting to compare the cFEP obtained using as a reference the most popu-

lated node, which is a representative of the unfolded state (Fig. 7b), with the cFEP

from the most populated node in the folded state (Fig. S16). The two cFEPs are

consistent. In particular, the (un)folding barrier height and the two main basins

are similar.
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Figure S16: Cut-based free-energy profile (cFEP) from the folded state. The location
of the barrier for unfolding is indicated (black arrow). A significantly higher unfolding
barrier (black curve) is obtained by merging the M=350 most populated nodes in the
folded basin as determined with M=1 (red curve).
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4.6 Imposing detailed balance on the ETN of lambda-repressor

For the lambda-repressor, detailed balance (DB) is not imposed. The cFEPs for

the ETNs with or without DB differ as shown in S17. The cFEP for the ETN
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Figure S17: Comparison of the cut-based free-energy profile (cFEP) from the most
populated state with and without detailed balance (DB) imposed. The cFEP from the
ETN with DB imposed has no barrier in contrast to the cFEP from the unmodified ETN.

with detailed balance imposed shows no barriers. The reason for this observation

are spurious transitions observed only in individual bursts. In the ETN, these

transitions show up as chains visited only once and only in one direction (a chain

is a sequence of nodes A1, . . . , An, where Ai is linked exclusively to Ai+1 for i =

1, . . . , n − 1). This hypothesis is confirmed by comparing the cFEP of the ETN

without DB to the cFEP of ETN (cf. Fig. S18) in which on all links but those

belonging to a chain visited just once are symmetrised (the weight of the link is set

to the average number of transitions in either direction).

As a second test, all links in a unidirectional chain are removed (blue cFEP in

S18). The position of the first barrier is equal for all three profiles. The barrier for

the cFEP from the ETN with links removed (blue curve in S18) is higher, because

spurious transitions are removed. These unidirectional chains are present, because

actual states of the system are split into multiple nodes due to shot noise.

As illustrated above, imposing detailed balance on a system such as the lambda-



25

 6

 8

 10

 12

 14

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

∆G
 [k

J/
m

ol
]

ZA/Z

DB not imposed
DB on links not in chain (shifted)

chains removed, DB imposed (shifted)

Figure S18: Assessment of the effect of unidirectional chains on the cut-based free-energy
profile (cFEP) from the most populated state when detailed balance (DB) is imposed.
All links apart from those in a unidirectional chain can be symmetrised (i.e. the weight
of the link is set to the average number of transitions in either direction) without any
change on the cFEP. Removing the chains from the cFEP leaves the position of the
barrier invariant. The height of the barrier increases, because spurious transitions are
removed. Two of the three cFEPs were shifted along the y-axis to bring the bottom of
the first basin on the left to the same reference value.

repressor leads to a different ETN. A random walker on a unidirectional chain walks

from start to end with shortest number of steps. If a chain is symmetrised, the

random walker diffuses for artificially long times along the symmetrised chain and

might even return to its beginning, which is a prediction in total contradiction to

the experimental results. However, if detailed balance is not imposed, the values for

the flux between the large nodes (number of transitions between them) are correct.
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